Leptogenesis, or why do we exist?

Michael Plümacher

Max Planck Institute for Physics, Munich

Introduction B and L Leptogenesis ν params. Alternatives Conclusions

Outline

- Introduction: two problems
- Baryon and lepton number violation in the SM
- One solution: Leptogenesis (in type I seesaw)
- Constraints on neutrino parameters
- Conclusions

Please interrupt and ask plenty of questions!

Introduction

Problem #1: The universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

$$\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 6 \times 10^{-10}$$

COSMOLOGY MARCHES ON

Introduction B and L Leptogenesis ν params. Alternatives Conclusions

Introduction

Problem #1: The universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

$$\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 6 \times 10^{-10}$$

Possible explanations:

- Symmetric cosmology: nucleons and anti-nucleons annihilate until $T\sim 20\,{\rm MeV}\Rightarrow$ residual nucleon to photon ratio $\sim 10^{-18}$
- η_B as initial condition: not compatible with inflation
- Matter and antimatter got separated: at $T \sim 20 \, \text{MeV}$ causally connected region contained $\sim 10^{-5} M_{\odot}$

Introduction B and L Leptogenesis ν params. Alternatives Conclusions

Introduction

Problem #1: The universe is made of matter.

Baryon asymmetry (from nucleosynthesis and CMB):

$$\eta_B \equiv \frac{n_b - n_{\bar{b}}}{n_{\gamma}} \sim 6 \times 10^{-10}$$

must have been generated during evolution of universe!

Necessary ingredients (Sakharov, 1967)

- Baryon number violation
- C and CP violation
- Deviation from thermal equilibrium

Sakharov's third condition

System in thermal equilibrium described by density operator

$$\rho = e^{-H/T}$$
, where H : Hamiltonian

time evolution of baryon number *B*:

$$B(t) = e^{iHt} B(0) e^{-iHt}$$

$$\Rightarrow \langle B(t) \rangle_T = \text{Tr} \left(e^{-H/T} e^{iHt} B(0) e^{-iHt} \right)$$

$$= \text{Tr} \left(e^{-iHt} e^{-H/T} e^{iHt} B(0) \right)$$

$$= \langle B(0) \rangle_T$$

Baryon number is constant in thermal equilibrium

Sakharov's third condition

Baryon number *B* is odd under *C*, even under *P* and *T*

 \Rightarrow B is odd under $CPT \equiv \theta$

Thermal average of baryon number:

$$\langle B \rangle_T = \operatorname{Tr}\left(e^{-H/T}B\right)$$

$$= \operatorname{Tr}\left(\theta^{-1}\theta e^{-H/T}B\right)$$

$$= \operatorname{Tr}\left(e^{-H/T}\theta B\theta^{-1}\right)$$

$$= -\langle B \rangle_T$$

No baryon asymmetry can be generated in thermal equilibrium!

Neutrino masses

- direct mass searches: $m_{\nu} \lesssim 2 \, \text{eV}$
- Neutrino oscillations:

atmospheric ν oscillations: $\Rightarrow m_{\nu_i} \gtrsim 0.05 \, \text{eV}$

solar ν oscillations: $\Rightarrow m_{\nu_i} \gtrsim 0.008\,\mathrm{eV}$

Problem #2:

v masses are $\neq 0$ but orders of magnitude smaller than any other known masses

Both problems cannot be solved in the Standard Model > need extended model

Standard Model:

- left- and right-handed quarks and charged leptons
- neutrinos only left-handed. Why?

Introduce right-handed neutrinos *N*

First prediction: neutrino masses (type I seesaw)

$$m_{
m v} \sim rac{v^2}{M}$$

 $v \sim 100\,\mathrm{GeV}$: SM mass scale; M: mass of N. Observed light neutrino masses yield clues on M

$$m_{\rm v} \gtrsim 0.05\,{\rm eV} \quad \Rightarrow \quad M \lesssim 10^{14}\,{\rm GeV}$$

Second prediction: lepton number L is violated Why do we care?

Baryon and lepton number violation in the SM

Leptogenesis

Baryon (B) and lepton (L) number

quarks:
$$B = \frac{1}{3}$$
, $L = 0$; leptons: $B = 0$, $L = 1$.

SM has global $U(1)_B$ and $U(1)_L$ symmetries:

$$U(1)_B: \qquad q(x) \to e^{i\alpha}q(x) , \quad l(x) \to l(x)$$

$$U(1)_L: \qquad q(x) \to q(x) , \quad l(x) \to \mathrm{e}^{i\phi} l(x)$$

⇒ classically conserved currents (Noether theorem)

$$\partial^{\mu}J_{\mu}^{B} = \partial^{\mu}\sum_{q}\frac{1}{3}\bar{q}\gamma_{\mu}q = 0$$

$$\partial^{\mu}J^{L}_{\mu} = \partial^{\mu}\sum_{l} \bar{l}\gamma_{\mu}l = 0$$

decompose into chiral parts: $\bar{f} \gamma_{\mu} f = \bar{f}_L \gamma_{\mu} f_L + \bar{f}_R \gamma_{\mu} f_R$

The triangle anomaly

Chiral currents are not conserved at the quantum level:

$$\partial^{\mu} \bar{f}_{L} \gamma_{\mu} f_{L} = -c_{L} \frac{g^{2}}{32\pi^{2}} F^{a}_{\mu\nu} \tilde{F}^{a\mu\nu}$$

$$\partial^{\mu} \bar{f}_{R} \gamma_{\mu} f_{R} = + c_{R} \frac{g^{2}}{32\pi^{2}} F^{a}_{\mu\nu} \tilde{F}^{a\mu\nu}$$

 f_L and f_R have identical QCD couplings \Rightarrow no QCD anomaly in J_μ^B and J_μ^L

Left- and right-handed fields couple differently to $SU(2)_L$ and $U(1)_Y \Rightarrow$ electroweak quantum effects violate baryon and lepton number conservation:

$$\partial^{\mu} \left(J_{\mu}^{B} + J_{\mu}^{L} \right) \neq 0, \qquad \partial^{\mu} \left(J_{\mu}^{B} - J_{\mu}^{L} \right) = 0$$

B+L is violated in SM, while B-L is conserved

Vacuum structure of non-Abelian gauge theories:

Topological charge:

('t Hooft '76)

$$\Delta B = \Delta L = n_f \Delta N_{CS}$$

Transition rate:

$$T=0:$$
 $e^{-4\pi/\alpha_w}\sim 10^{-170}$

$$T=0:$$
 $\mathrm{e}^{-4\pi/lpha_w}\sim 10^{-170}$ $T>0:$ $\mathrm{e}^{-E_{sph}/T}$ with $E_{sph}\sim rac{8\pi v(T)}{g}$

$$T > T_{ew}: \qquad lpha_w^5 T^4$$
 (Bödeker '98)

SM: B + L is violated by instantons

(Klinkhammer & Manton '84; Kuzmin et al. '85)

Sphalerons are in thermal equilibrium above electroweak 'phase transition':

$$T_{ew} \sim 100 \text{ GeV} \lesssim T \lesssim 10^{12} \text{ GeV}$$

B+L violated, B-L conserved.

B and *L* are not independent at $T \gtrsim 100 \, \mathrm{GeV}$

$$\eta_B = c \, \eta_{B-L} = rac{c}{c-1} \, \eta_L \,, \quad \text{with} \quad c \sim rac{1}{3}$$

L violating processes can generate η_B !

Leptogenesis

A free lunch: Leptogenesis in type I seesaw

Right-handed neutrinos can also give rise to η_B (Fukugita and Yanagida '86) Yukawa couplings:

$$\mathscr{L}_Y \simeq \overline{N} \lambda_V lH - \overline{N} MN$$

Ns are unstable, decay to lepton-Higgs pairs:

$$\Gamma_D \propto \widetilde{m}_1 = rac{v^2}{M_1} (\lambda_{\nu}^{\dagger} \lambda_{\nu})_{11}$$

- N interactions violate $L \to L \neq 0$, partially converted to $B \neq 0$ by sphalerons
- λ_{ν} complex \Rightarrow *CP* violation ε_{i}

$$N_1 \longrightarrow H$$
 l
 H
 l
 H
 l
 H
 l
 H

How does a violation of CP arise?

Consider a simple example, e.g. the decay of a particle X into some final state f and the CP conjugated process $\bar{X} \rightarrow \bar{f}$

Generic amplitude at tree level and one-loop:

$$A(X \rightarrow f) = g_0 A_0 + g_1 A_1$$

Decay width at LO (tree level) and NLO (interference between tree level and one-loop):

$$\Gamma(X \to f) = |g_0|^2 I_0 + g_0 g_1^* I_1 + g_0^* g_1 I_1^*$$

 $g_{0,1}$: (products of) coupling constant(s) at tree level and 1-loop $I_{0,1}$: kinematical factors at LO and NLO (phase space, etc.) \rightarrow identical for particles and anti-particles (CPT)

CP conjugated process:

$$\Gamma(\bar{X} \rightarrow \bar{f}) = |g_0|^2 I_0 + g_0^* g_1 I_1 + g_0 g_1^* I_1^*$$

CP asymmetry:

Diference of decay widths:

$$\varepsilon \propto \Gamma(X \to f) - \Gamma(\bar{X} \to \bar{f})$$

$$= g_0 g_1^* I_1 + g_0^* g_1 I_1^* - g_0^* g_1 I_1 - g_0 g_1^* I_1^*$$

$$= (g_0 g_1^* - g_0^* g_1) (I_1 - I_1^*)$$

$$= -4 \operatorname{Im} (g_0 g_1^*) \operatorname{Im} (I_1)$$

Two different phases are needed in order to get CP violation:

- one phase from the couplings
- one phase from the kinematical factors: rescattering phase, arises if particles in loop are on-shell

Leptogenesis

A free lunch: Leptogenesis in type I seesaw

Right-handed neutrinos can also give rise to η_B (Fukugita and Yanagida '86) Yukawa couplings:

$$\mathscr{L}_Y \simeq \overline{N} \lambda_V lH - \overline{N} MN$$

Ns are unstable, decay to lepton-Higgs pairs:

$$\Gamma_D \propto \widetilde{m}_1 = rac{v^2}{M_1} (\lambda_{\nu}^{\dagger} \lambda_{\nu})_{11}$$

- N interactions violate $L \to L \neq 0$, partially converted to $B \neq 0$ by sphalerons
- λ_{ν} complex \Rightarrow *CP* violation ε_{i}

$$N_1 \longrightarrow H$$
 l
 H
 l
 H
 l
 H
 l
 H

Challenge #1: How do the *N* get produced?

(Luty '92; M.P. '96; Pilaftsis and Underwood '03)

B and L

N scattering processes are important all production processes $\propto \widetilde{m}_1$

need large \widetilde{m}_1 for efficient production

Challenge #2: L violating scatterings can destroy η_B

(Fukugita & Yanagida '90; Buchmüller, Di Bari & M.P. '02; Giudice et al. '03)

Two contributions to reaction rate:

- resonant contribution from N_1 : $\propto \widetilde{m}_1$
- remainder: $\propto M_1 \overline{m}^2$, $\overline{m}^2 = \sum m_{v_i}^2$

H N H

need small \widetilde{m}_1 and $M_1\overline{m}^2$ to avoid washout

Two conflicting requirements

---- network of Boltzmann equations

Expansion vs. interactions:

The time evolution of number densities n is described by Boltzmann equations:

$$\frac{\mathrm{d}n}{\mathrm{d}t} + 3Hn = n\Gamma$$

Two competing terms:

- \bigcirc expansion term 3Hn tends to drive the system out of equilibrium
- ② interaction terms $\Gamma = n_{\text{target}} \langle \sigma | \mathbf{v} | \rangle$ try to restore thermal equilibrium

Whether a particle species is in thermal equilibrium or not depends on ratio of scattering rate to expansion rate.

Particle falls out of equilibrium when $\Gamma \lesssim H$

Out-of-equilibrium condition:

The N_1 are not in thermal equilibrium if N decay width Γ_D smaller than expansion rate H:

$$\Gamma_D < H(T)$$

⇒ upper bound on effective light neutrino mass:

Leptogenesis

$$\widetilde{m}_1 \lesssim 10^{-3} \,\mathrm{eV}$$
 with $\widetilde{m}_1 = \frac{v^2}{M_1} (\lambda_v^\dagger \lambda_v)_{11}$

Scale of light neutrino masses

$$\sqrt{\Delta m_{
m sol}^2} \simeq 8 imes 10^{-3} \, {
m eV} \, \, {
m and} \, \, \sqrt{\Delta m_{
m atm}^2} \simeq 5 imes 10^{-2} \, {
m eV}$$

since $m_{v_1} \leq \widetilde{m}_1 \rightsquigarrow$ deviations from thermal equilibrium small (?)

Rescale to get rid of expansion term:

Consider particle number N in a comoving volume element R_*^3 instead of number density n.

 R_*^3 contains one photon at time t_* before leptogenesis

$$N(t) = n(t)R_*^3(t)$$

$$\Rightarrow \dot{N}(t) = \dot{n}(t)R_*^3(t) + 3n(t)R_*^2(t)\dot{R}_*(t)$$

$$\Rightarrow \frac{1}{R_*^3(t)}\dot{N}(t) = \dot{n}(t) + 3Hn(t)$$

Replace time t by inverse temperature z = M/T. In radiation dominated universe: $t = z^2/2H(M)$

⇒ LHS of Boltzmann eqs. can be written as:

$$\frac{H(M)}{zR_*^3}\frac{\mathrm{d}N}{\mathrm{d}z} = \dot{n}(t) + 3Hn(t)$$

The Boltzmann equations for leptogenesis

competition between production and washout:

$$\frac{dN_{N_1}}{dz} = -(D+S)(N_{N_1}-N_{N_1}^{eq})$$

$$\frac{\mathrm{d}N_{B-L}}{\mathrm{d}z} = -\varepsilon_1 D \left(N_{N_1} - N_{N_1}^{\mathrm{eq}}\right) - W N_{B-L}$$

$$z = M_1/T \quad \propto \sqrt{t}$$

 N_i : number densities in comoving volume

D: decays

S: $\Delta L = 1$ scatterings

W: washout due to L violating scatterings

The Boltzmann equations for leptogenesis

competition between production and washout:

$$\frac{dN_{N_1}}{dz} = -(D+S)(N_{N_1}-N_{N_1}^{eq})$$

$$\frac{\mathrm{d}N_{B-L}}{\mathrm{d}z} = -\varepsilon_1 D \left(N_{N_1} - N_{N_1}^{\mathrm{eq}}\right) - W N_{B-L}$$

produced baryon asymmetry:

$$\eta_B \simeq 10^{-2} \, \varepsilon_1 \, \kappa(\widetilde{m}_1, M_1 \overline{m}^2)$$

need to know:

- CP asymmetry ε_1 (from neutrino mass model)
- efficiency factor κ parametrizes N interactions (from integration of Boltzmann eqs.)

(Barbieri et al. '00; Buchmüller, Di Bari & M.P. '02)

Baryon asymmetry determined by four parameters

- *CP* asymmetry ε_1
- 2 mass of decaying neutrino M_1
- effective light neutrino mass (coupling strength of N_1)

$$\widetilde{m}_1 = rac{v^2}{M_1} \left(\lambda_{
u}^\dagger \lambda_{
u}
ight)_{11}$$

light neutrino masses

$$\overline{m} = \sqrt{m_{\nu_1}^2 + m_{\nu_2}^2 + m_{\nu_3}^2}$$

since

$$\Gamma_{\Delta L=2} \propto M_1 \overline{m}^2$$